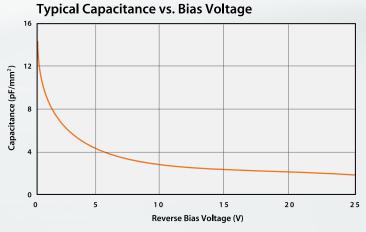
Large Active Area 970nm Si Monitor Photodiodes

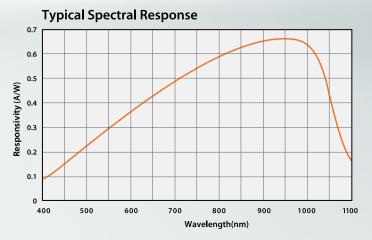
FCI-020A and FCI-040A with active area sizes of 0.5mm and 1.0mm, are parts of OSI Optoelectronics's large active area IR sensitive Silicon detectors exhibiting excellent responsivity at 970nm. These large active area devices are ideal for use in low speed infrared instrumentation and monitoring applications. The photodiode chip is isolated in a TO-18 package.

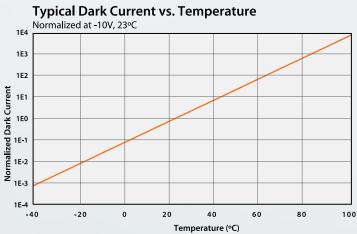
APPLICATIONS

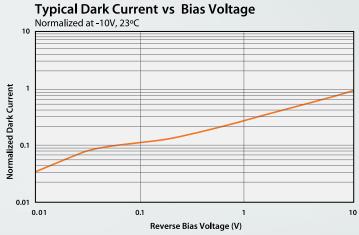
- Optical Communications
- Power Measurement
- IR Sensing
- Medical Devices
- Optical Taps

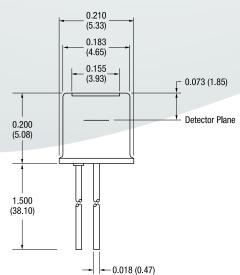
FEATURES

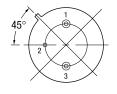

- High Responsivity @ 970nm
- Large Active Area Diameter
- Spectral Range 400nm to 1100nm
- Wide Dynamic Range




Absolute Maximum Ratings										
PARAMETERS	SYMBOL	MIN	MAX	UNITS						
Storage Temperature	T _{stg}	-55	+125	°C						
Operating Temperature	T _{op}	-40	+75	°C						
Soldering Temperature	T _{sld}		+260	°C						


Electro-Optical Characteristics T _A =23°C										
PARAMETERS	SYMBOL	CONDITIONS		FCI-020/	1		FCI-040A		UNITS	
PARAMETERS	STMBUL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIIS	
Active Area Diameter	AA_{ϕ}			0.51			1.02		mm	
		λ=400nm	0.07	0.12		0.07	0.12			
Responsivity	R_{λ}	λ=632nm	0.33	0.40		0.33	0.40		A/W	
		λ=970nm	0.60	0.65		0.60	0.65			
6 "		V _R =0V		4			8		_	
Capacitance	C _j	V _R =10V		1			2		pF	
Dark Current	I _d	V _R =10V		0.01	0.15		0.05	0.50	nA	
Reverse Voltage					30			30	V	
Rise Time	t _r	$V_R = 10V, \lambda = 632$ nm 10% to $90\%, R_L = 50\Omega$		26			24		ns	
NEP				2.80E -15			6.20E -15		W/√Hz	


Large Active Area 970nm Si Monitor Photodiodes



Case ② 3 Cathode

Pin Circle Diameter = 0.100 (2.54)

Bottom View

Notes:

- All units in inches (mm).
- The flat window devices have broadband AR coatings centered at 850nm.

100Mbps / 155Mbps / 622Mbps

Large Active Area and High Speed Silicon Photodiodes

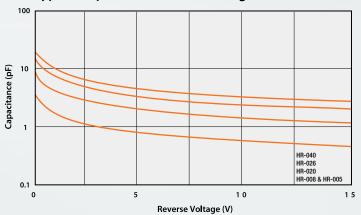
OSI Optoelectronics's family of large active area and high speed silicon detector series are designed to reliably support short-haul data communications applications. All exhibit low dark current and low capacitance at 3.3V bias. The base unit comes in a 3 pin TO-46 package with micro lens cap or AR coated flat window. Standard fiber optic receptacles (FC, ST, SC and SMA) allow easy integration of OSI Optoelectronics's fast silicon photodiodes into systems.

APPLICATIONS

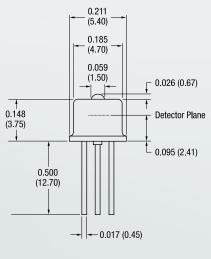
- High Speed Optical Communications
- Single/Multi-Mode Fiber Optic Receiver
- Fast Ethernet/FDDI
- SONET/SDH, ATM

FEATURES

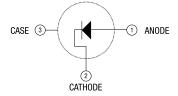
- Silicon Photodiodes
- High Responsivity
- Large Sensing Area
- Low Capacitance @ 3.3V Bias
- Low Cost



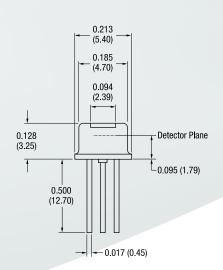
Absolute Maximum Ratings									
PARAMETERS	SYMBOL	MIN	MAX	UNITS					
Storage Temperature	T _{stg}	-55	+125	°C					
Operating Temperature	T _{op}	-40	+75	°C					
Soldering Temperature	T _{sld}		+260	°C					

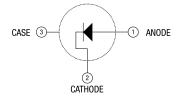

Electro-Optic	al Char	acterist	ics															T _A =	=23°C	
PARAMETERS	SYMBOL	CONDIT	TONE		CI-HRO		-	CI-HRO			CI-HRO		-	CI-HR02		-	CI-HRO		UNITS	
PAKAMETERS	STMBUL	CONDIT	TONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIIS	
Active Area Diameter	AA_{ϕ}				127			203			508			660			991		μm	
Responsivity (Flat Window Package)	R_{λ}	λ=850	nm		0.50			0.50			0.50			0.50			0.50		A/W	
Dark Current	I _d	V _R = 5	.0V		0.02	0.80		0.03	0.80		0.06	1.00		0.09	1.50		0.30	2.00	nA	
_		V _R = 3	.3V		0.9			0.9			2.1			2.8			5.2			
Capacitance	C _j	V _R = 5	.0V		0.80			0.80			1.8			2.6			4.9		pF	
Б: Т		_	10% to 90%	V _R = 3.3V		0.75			0.75			1.00			1.10			1.20		
Rise Time	t _r	$R_L = 50\Omega$ $\lambda = 850$ nm	V _R = 5.0V		0.60			0.60			0.80			0.90			1.00		ns	
Max. Reverse Voltage						20			20			20			20			20	V	
NEP					5.95E -15			6.19E -15			8.76E -15			1.07E -14			1.96E -14		W/√Hz	

Typical Capacitance vs. Bias Voltage



Frequency Response vs. Bias Voltage





Pin Circle Diameter = 0.100 (2.54)

Bottom View

Pin Circle Diameter = 0.100 (2.54)

Notes:

- All units in inches (mm).
- All tolerances: 0.005 (0.125).
- Please specify when ordering the flat window or len cap devices.
- The flat window devices have broadband AR coatings centered at 850nm.
- The thickness of the flat window=0.008 (0.21).

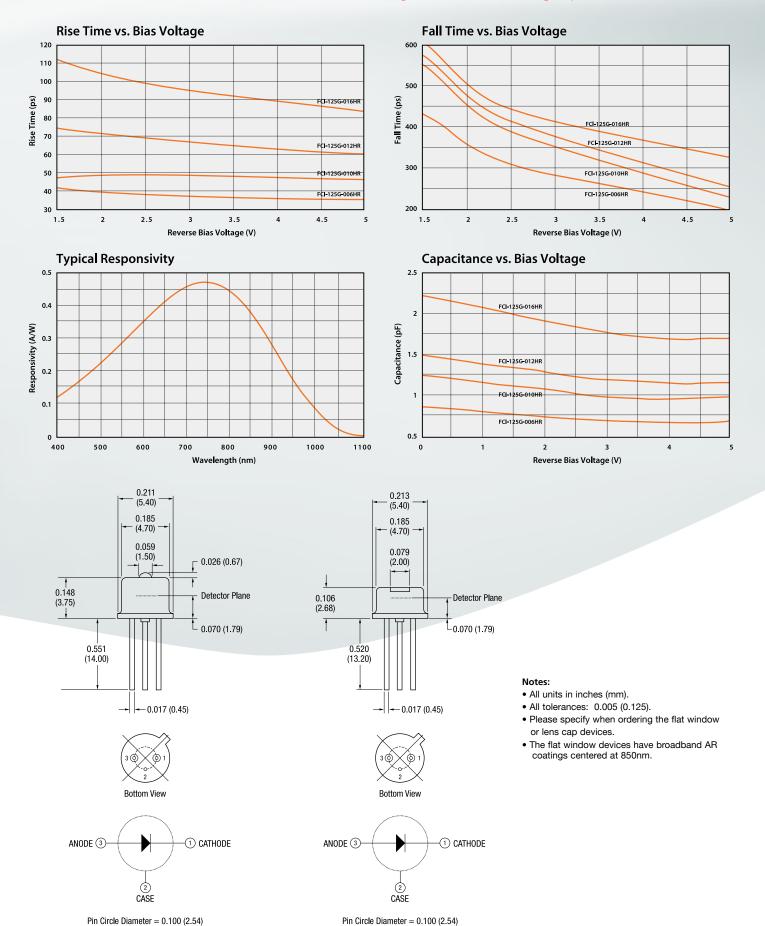
Large Active Area and High Speed Silicon Photodiodes

OSI Optoelectronics's family of large active area and high speed silicon PIN photodiodes possesses a large sensing area optimized for short-haul optical data communication applications at 850nm. The photodetectors exhibit high responsivity, wide bandwidth, low dark current and low capacitance at 3.3V. They are designed to match the most widely used transimpedance amplifiers. The photodiodes can be used in all 850nm transceivers and GBICs up to 1.25Gbps applications such as Gigabit Ethernet and Fibre Channel. The chip is isolated in a 3 pin TO-46 package with options of micro lens cap or an AR coated flat window. They are also available in standard fiber receptacles such as FC, ST, SC and SMA. For availability in chip form please contact our sales department.

APPLICATIONS

- High Speed Optical Communications
- Single/Multi-Mode Fiber Optic Receiver
- Gigabit Ethernet/Fibre Channel
- SONET/SDH, ATM

FEATURES


- Silicon Photodiodes
- High Responsivity
- Large Sensing Area
- Low Capacitance @ 3.3V
- Low Cost

Absolute Maximum Ratings									
PARAMETERS	SYMBOL	MIN	MAX	UNITS					
Storage Temperature	T _{stg}	-55	+125	°C					
Operating Temperature	T _{op}	-40	+75	°C					
Soldering Temperature	T _{sld}		+260	°C					

Electro-Optica	l Charact	teristics													T _A =	23°C
DADAMETERS SYMPS		CONDIT	TONG	FCI-125G-006HRL FCI-125G-010H			0HRL	. FCI-125G-012HRL			FCI-125G-016HRL			LINITE		
PARAMETERS	SYMBOL	CONDIT	IONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Active Area Diameter	AA_{ϕ}				150			250			300			400		μm
Responsivity (Flat Window Package)	R_{λ}	λ=850)nm		0.36			0.36			0.36			0.36		A/W
Dark Current I_d -	$V_R = 3$	3.3V		20	500		25	500		30	500		40	500	pA	
	V _R = 5	5.0V		30	500		35	500		40	500		50	500	PA	
Capacitance C _j	1 1	$V_R = 3$	3.3V		0.66			0.96			1.16			1.73		n.F
	$V_R = 5$	5.0V		0.65			0.94			1.13			1.70		pF	
Rise Time	20% to . 80%	V _R = 3.3V		38			50			69			100			
Rise Tillle	t _r	$R_L=50\Omega$ $\lambda=850$ nm	V _R = 5.0V		35			47			60			84		ps
Fall Time	_	80% to 20%	V _R = 3.3V		313			429			436			449		
raii illile	L _f	t_f $R_L=50\Omega$ $\lambda=850$ nm	V _R = 5.0V		200			246			265			329		ps
Max. Reverse Voltage						20			20			20			20	V
NEP					8.60E -15			9.29E -15			9.93E -15			1.11E -14		W/√H:

Large Active Area and High Speed Silicon Photodiodes

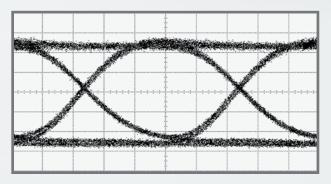
1.25Gbps Silicon Photodetector / Transimpedance Amplifier

FCI-H125G-010 is a low noise, high bandwidth photodetector plus transimpedance amplifier designed for short wavelength (850nm) high speed fiber optic data communications. The hybrid incorporates a 250µm diameter large sensing area, high sensitivity silicon photodetector. It also includes a high gain transimpedance amplifier producing a differential output voltage for latching to post amplifiers used in electrooptical receivers and transceivers for Gigabit Ethernet and Fibre Channel applications up to 1.25Gbps over multi-mode fiber. The photodetector converts the light into an electrical signal while the output voltage increases with light input. This is achieved by a single +3.3V to +5V positive power supply. These devices are available in 4 pin TO-46 metal packages with either a double sided AR coated window cap or an integrated lens cap. The 250µm diameter sensing area eases fiber alignment for connectorization or receptacle attachment. Furthermore, the proximity of the transimpedance amplifier to the photodetector lowers the capacitance associated with long traces, therefore allowing higher bandwidth and sensitivity.

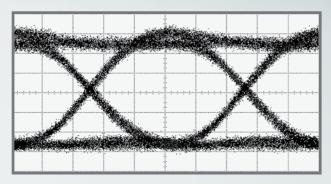
APPLICATIONS

- High Speed Optical Communications
- Gigabit Ethernet
- Fibre Channel

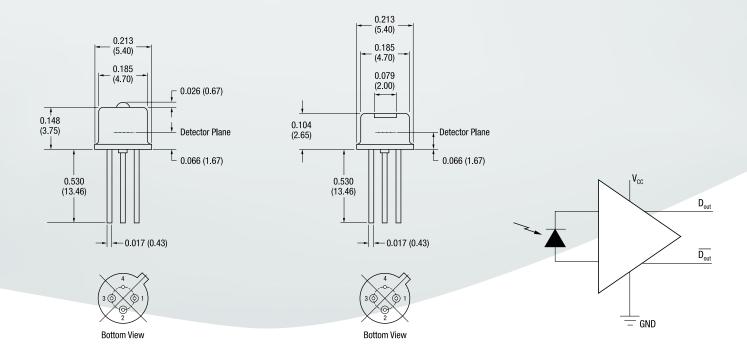
FEATURES


- Silicon Photodetector / Low Noise Transimpedance Amplifier
- Low Cost
- Large Active Area of 250µm
- High Bandwidth / Wide Dynamic Range
- Automatic Gain Control (AGC)
- Hermetically Sealed TO-46 Can
- Single +3.3V to +5V Power Supply
- Differential Output

Absolute Maximum Ratings									
PARAMETERS	SYMBOL	MIN	MAX	UNITS					
Storage Temperature	T _{stg}	-55	+125	°C					
Operating Temperature	T _{op}	-40	+75	°C					
Supply Voltage	V _{cc}	0	+6	V					
Input Optical Power	P _{IN}		+5	dBm					



Electro-Optical Characteristics T _A =23°C, Vcc=+5.0V, 850nm, 100Ω Differential AC Load										
PARAMETERS	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS				
Supply Voltage	V _{cc}		+3		+5.5	V				
Supply Current	I _{CC}			38	50	mA				
Active Area Diameter	AA_{ϕ}			250		μm				
Operating Wavelength	λ			850		nm				
Responsivity	R_{λ}	-19dBm, Differential		3000		V/W				
Transimpedance		-19dBm, Differential		8300		Ω				
Sensitivity	S	BER 10 ⁻¹⁰ , PRBS2 ⁷ -1	-20	-23		dBm				
Optical Overload			-3	0		dBm				
Bandwidth	BW	-3dB, Small Signal	800	1000		MHz				
Differential Output Voltage	V _{OUT, P-P}			200		mV _{p-p}				
Output Impedance			40	50	62	Ω				


Use AC coupling and differential 100Ω load for the best high-speed performance. Devices are not intended to drive DC coupled, 50Ω grounded load.

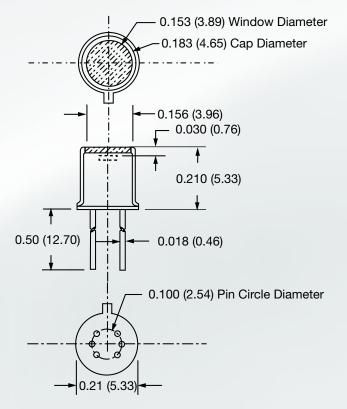
40mV / div, 160ps / div, -12dBm, 850nm, $PRBS2^7$ -1, Diff.

20mV / div, 160ps / div, -17dBm, 850nm, $PRBS2^7$ -1, Diff.

$\begin{array}{c|c} \textbf{PINOUT} \\ \hline 1 & D_{out} \\ 2 & V_{CC} \\ 3 & \overline{D_{out}} \\ 4 & \textbf{GND} \\ \end{array}$

 $Pin \ Circle \ Diameter = 0.100 \ (2.54)$

PINOUT								
	1	D_{out}						
	2	$V_{\rm CC}$						
	3	$\overline{D_{out}}$						
	4	GND						

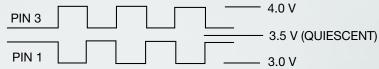

Pin Circle Diameter = 0.100 (2.54)

Notes:

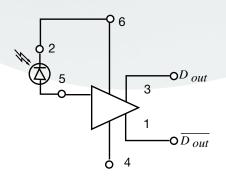
- All units in inches (mm).
- All tolerances: 0.005 (0.125).
- Please specify when ordering the flat window or lens cap devices.
- The flat window devices have broadband AR coatings centered at 850nm.
- The thickness of the flat window=0.008 (0.21).

Fiberoptic Receiver

The BPX65-100 receiver contains a BPX-65 ultra high speed photodiode coupled to an NE5212 (Signetics) transimpedance amplifier. Standard products include ST aned SMA connector versions.



APPLICATIONS


- 100Mbs Optical Communications
- Fiber Patchcord Coupling
- Silicon-based Optical Receivers

FEATURES

- 140MHz Bandwidth
- 14KΩ Differential Transresistance
- 400 nm to 1000nm Spectral Range
- 2.5 PA Transimpedance Amplifier √Hz.

OUTPUT WAVEFORMS (NOMINAL VALUES)

Pin Designations

- $1 \overline{D_{out}}$
- 2 Cathode
- $3 D_{out}$
- 4 Ground
- 5 Anode
- 6 Vcc (5 V)

Absolute Maximum Ratings								
	MAX	UNITS						
Maximum Voltage	6	V						
Operating Temp. Range	-20 to +70	°C						

Receiver Data at 25°C										
MODEL NUMBER	FIBER CONNECTOR	POWER SUPPLY	$\begin{array}{c} \textbf{DETECTOR} \\ \textbf{RESPONSIVITY} \\ \lambda = 850 \text{nm} \end{array}$	AMPLIFIER GAIN	MAX DATA RATE					
BPX65-100	None									
BPX65-100ST	ST	5V	0.5 A/W	14 ΚΩ	100 Mbps					
BPX65-100SMA	SMA									